PosteriorStandardDeviation¶
- class baybe.acquisition.acqfs.PosteriorStandardDeviation[source]¶
Bases:
AcquisitionFunctionPosterior standard deviation.
Public methods
__init__([maximize])Method generated by attrs for class PosteriorStandardDeviation.
evaluate(candidates, surrogate, searchspace, ...)Get the acquisition values for the given candidates.
from_dict(dictionary)Create an object from its dictionary representation.
from_json(source, /)Create an object from its JSON representation.
to_botorch(surrogate, searchspace, ...[, ...])Create the botorch-ready representation of the function.
to_dict()Create an object's dictionary representation.
to_json([sink, overwrite])Create an object's JSON representation.
Public attributes and properties
If
True, points with maximum posterior standard deviation are selected.An alternative name for type resolution.
Whether this acquisition function can handle models with multiple outputs.
- __init__(maximize: bool = True)¶
Method generated by attrs for class PosteriorStandardDeviation.
For details on the parameters, see Public attributes and properties.
- evaluate(candidates: DataFrame, surrogate: SurrogateProtocol, searchspace: SearchSpace, objective: Objective, measurements: DataFrame, pending_experiments: DataFrame | None = None, *, jointly: bool = False)¶
Get the acquisition values for the given candidates.
- Parameters:
candidates (
DataFrame) – The candidate points in experimental representation. For details, seebaybe.surrogates.base.Surrogate.posterior().surrogate (
SurrogateProtocol) – The surrogate model to use for the acquisition function.searchspace (
SearchSpace) – The search space. Seebaybe.recommenders.base.RecommenderProtocol.recommend().objective (
Objective) – The objective. Seebaybe.recommenders.base.RecommenderProtocol.recommend().measurements (
DataFrame) – Available experimentation data. Seebaybe.recommenders.base.RecommenderProtocol.recommend().pending_experiments (
Optional[DataFrame]) – Optional pending experiments. Seebaybe.recommenders.base.RecommenderProtocol.recommend().jointly (
bool) – IfFalse, the acquisition values are computed independently for each candidate. IfTrue, a single joint acquisition value is computed for the entire candidate set.
- Return type:
- Returns:
Depending on the joint mode, either a single batch acquisition value or a series of individual acquisition values.
- classmethod from_json(source: str | Path | SupportsRead[str], /)¶
Create an object from its JSON representation.
- Parameters:
source (str | Path | SupportsRead[str]) –
The JSON source. Can be:
A string containing JSON content.
A file path or
Pathobject pointing to a JSON file.A file-like object with a
read()method.
- Raises:
ValueError – If
sourceis not one of the allowed types.- Return type:
_T
- Returns:
The reconstructed object.
- to_botorch(surrogate: SurrogateProtocol, searchspace: SearchSpace, objective: Objective, measurements: DataFrame, pending_experiments: DataFrame | None = None)¶
Create the botorch-ready representation of the function.
The required structure of measurements is specified in
baybe.recommenders.base.RecommenderProtocol.recommend().- Return type:
- to_dict()¶
Create an object’s dictionary representation.
- Return type:
- Returns:
The dictionary representation of the object.
- to_json(sink: str | Path | SupportsWrite[str] | None = None, /, *, overwrite: bool = False, **kwargs: Any)¶
Create an object’s JSON representation.
- Parameters:
sink (str | Path | SupportsWrite[str] | None) –
The JSON sink. Can be:
None(only returns the JSON string).A file path or
Pathobject pointing to a location where to write the JSON content.A file-like object with a
write()method.
overwrite (bool) – Boolean flag indicating if to overwrite the file if it already exists. Only relevant if
sinkis a file path orPathobject.**kwargs (Any) – Additional keyword arguments to pass to
json.dumps().
- Raises:
FileExistsError – If
sinkpoints to an already existing file butoverwriteisFalse.- Return type:
str
- Returns:
The JSON representation as a string.