baybe.simulation.scenarios.simulate_scenarios¶
- baybe.simulation.scenarios.simulate_scenarios(scenarios: dict[Any, Campaign], lookup: DataFrame | Callable[[DataFrame], DataFrame] | None = None, /, *, batch_size: int = 1, n_doe_iterations: int | None = None, initial_data: list[DataFrame] | None = None, groupby: list[str] | None = None, n_mc_iterations: int = 1, random_seed: int | None = None, impute_mode: Literal['error', 'worst', 'best', 'mean', 'random', 'ignore'] = 'error', noise_percent: float | None = None)[source]¶
Simulate multiple Bayesian optimization scenarios.
A wrapper function around
baybe.simulation.core.simulate_experiment()that allows to specify multiple simulation settings at once.- Parameters:
scenarios (
dict[Any,Campaign]) – A dictionary mapping scenario identifiers to DOE specifications.lookup (
Union[DataFrame,Callable[[DataFrame],DataFrame],None]) – Seebaybe.simulation.core.simulate_experiment().batch_size (
int) – Seebaybe.simulation.core.simulate_experiment().n_doe_iterations (
Optional[int]) – Seebaybe.simulation.core.simulate_experiment().initial_data (
Optional[list[DataFrame]]) – A list of initial data sets for which the scenarios should be simulated.groupby (
Optional[list[str]]) – The names of the parameters to be used to partition the search space. A separate simulation will be conducted for each partition, with the search restricted to that partition.n_mc_iterations (
int) – The number of Monte Carlo simulations to be used.random_seed (
Optional[int]) – An optional integer specifying the random seed for the first Monte Carlo run. Each subsequent runs will increase this value by 1. If omitted, the current random seed is used.impute_mode (
Literal['error','worst','best','mean','random','ignore']) – Seebaybe.simulation.core.simulate_experiment().noise_percent (
Optional[float]) – Seebaybe.simulation.core.simulate_experiment().
- Return type:
- Returns:
A dataframe like returned from
baybe.simulation.core.simulate_experiment()but with additional columns. See theNotefor details.The following additional columns are contained in the dataframe returned by this function:
Scenario: Specifies the scenario identifier of the respective simulation.Monte_Carlo_Run: Specifies the Monte Carlo repetition of the respective simulation.Optional, if
random_seedis provided: A columnRandom_Seedthat specifies the random seed used for the respective simulation.Optional, if
initial_datais provided: A columnInitial_Datathat specifies the index of the initial data set used for the respective simulation.Optional, if
groupbyis provided: A column for eachgroupbyparameter that specifies the search space partition considered for the respective simulation.